AGROECOLOGY
(THE SOIL) - DECONTAMINATION POTENTIAL
In
the early 1990s, a Swedish farmer, Göran Olsson, concerned about the risks of
environmental consequences of his agricultural practices, had the idea of
confining his phytosanitary effluents in a sort of pit filled with soil and
organic matter. His idea was to avoid pollution around his filling and washing
point, assuming that the effluents, over time, would lose all or part of their
contaminating potential.
Picture: http://biobeds.net/media/2016/03/070110-Goran-Olshon-biobed_webb.jpg
Phytosanitary
effluents are constituted by water, contaminated with synthetic or natural
pesticides, spattered during the filling of spraying machines, rests of the
tanks which the pump can't aspirate, residues of mixtures unapplied to the
crop, and especially contaminated water generated by the washing of spraying
machines after the applications. Washing water generally accounts for nearly
90% of total phytosanitary effluents.
It
may also happen, although exceptionally, that during the preparation of a tank,
a chemical reaction (due to the quality of the water, to the temperature, or to
the mixture of products) occurs, or just an error (incorrect pouring into the
tank of an unsuitable or prohibited product), which makes the phytosanitary
mixture unusable. In this case, this failed mixture is also a phytosanitary
effluent.
I
imagine that several attempts have been necessary to get a coherent result, but
the fact is there. This gentleman thus invented a principle, called biological
bed, or biobed, then scientifically studied and modified to improve its
efficiency, which allows the farmer to considerably reduce the collateral
effects of phytosanitary sprayings. The agrochemical giant Bayer proposes an
optimization of the principle under the brand Bayer Phytobac®, increasingly
known in agricultural circles. It's an improved biobed that reduces the volume
and ensures an optimal operation.
Pesticides,
if concentrated in excessive amounts, are potentially hazardous to the
environment.
This
is true for synthetic pesticides, although the molecules currently available in
Europe present a very low risk, compared to the many molecules prohibited in
recent years.
This
is also true for "natural" pesticides authorized in organic farming.
Indeed, many of these pesticides are plant extracts or products synthesized
from bacteria and are ultimately chemical molecules that have similar environmental
effects to synthetic pesticides (risk to soils, to aquatic fauna, to birds,
etc.). About that point, see my series "Natural vs synthetic" https://culturagriculture.blogspot.com.es/search/label/EN-%20Natural%20vs%20synthetic,
of which at the moment I published three chapters.
It
is therefore very important that, irrespective of the method of cultivation
adopted, apart from biodynamic agriculture, the effluents are properly
controlled.
Many
farmers, who are concerned about this problem but have no effective available
system, have taken steps to prevent their phytosanitary effluents become a
pollution source. Many farms have a pit in which they are stored and confined,
pending evaporation, or spreading, after dilution in water, to uncultivated
areas and away from water points (wells, streams, ponds, basins, etc.). But
this method has limits. It's nevertheless better than not doing anything, and
looking elsewhere ...
For
several years, the recognition of biobed and Phytobac® remained limited to a
few farmers, without actually spreading. But in 2007, in France, several
political meetings were held, called "Grenelle Environnement", in
order to make decisions directly affecting the environmental consequences of
different human activities. These meetings gave rise to legislations, standards
of operation for all economic sectors. As far as agriculture was concerned, it
was the start of a whole series of inventions and standardizations concerning
in particular the uses of pesticides and fertilizers, natural or synthetic.
The
principle of the biobed thus marked its great takeoff. At present, several
thousand biobeds are operating in France, and nearly twenty principles for the
destruction of agricultural phytosanitary effluents have been authorized by the
Ministry of Agriculture. But a single principle can be considered biological,
biobed, and specifically Phytobac®. All other principles lead to a contaminated
residue (filters, sludge, bags, etc.), the collection of which must be carried
out with all the necessary precautions, to a specialized company, for its
reprocessing.
The biobed makes it possible to
carry out the decontamination treatment locally, without danger, without
transport, incineration or industrial process.
What science demonstrated, in particular the INRA
(National Institute for Agronomic Research) in France, which has extensively
worked on the principle of biobed to verify its validity, is that chemical molecules, whether synthetic or not, are naturally
decomposed by the bacterial flora of the soil, bringing them back to simple
elements or to simple molecules, non-polluting, naturally present in the
environment, such as water, carbon dioxide, or calcium carbonate. This
process takes time (on the order of 4 to 6 months), but is real and complete.
Only a few very rare molecules, currently banned, resist this process,
especially DDT. The complete degradation of DDT in soils takes several decades,
going through several phases, DDD and DDE.
But
all the present molecules are completely degraded in the soil within a few
hours to a few months. This is one of the criteria that the competent
authorities currently consider essential to accept the approval of a new
molecule, or the renewal of an old one.
How is a biobed made?
In the original Swedish system, the washing area is
simply a pit filled with soil and organic matter in which the effluents fall
and are stored. Nature does its work, the grass grows and participates in the
efficiency of the system. However, large farms must have large areas, complex
and expensive facilities, and maintenance is very difficult. Furthermore, the
risks of overflowing are high.
The optimized Phytobac® uses the same idea, but
incorporates a number of criteria to increase its efficiency, while reducing
its volume, facilitating maintenance and increasing its safety.
The
effluent thus passes through a totally impermeable washing area, is stored in a
reservoir, and is applied to the degradation/evaporation container by a set of
pumps. The depth of the substrate is limited because the aerobic useful
microbial flora (which needs air) is maintained in the first 50 centimeters
deep only.
In
short, the principle is the same, but the implementation is different, to
improve its effectiveness, safety and control.
How does the soil decompose these
molecules?
In
fact, it is the soil bacteria that do it. They attack the molecules directly
and decompose them by breaking the chemical bonds between the different atoms.
Agrochemical molecules are all
composed of very common elements, C, H, O, N, Ca, Cl, S, K, Cu, Fe, F, P, Zn, Mg, Mn, which are all naturally present in soils
elements and are almost all nutritional elements for plants. What chemistry
does is to combine these elements together, with special connections, to make molecules
for specific use.
These
elements, once released from the bonds that make them a molecule, will
recombine to form other ordinary molecules, such as water, carbon dioxide, and
calcium carbonate.
Some
elements, especially metals, remain in the biobed. Therefore, concentrations of
these metals in the substrate must be monitored to avoid contamination of the
biobed. When these concentrations approach the levels considered dangerous
(according to in force soil pollution standards), the substrate is renewed. The
old substrate, which is non-toxic if the standards are met, i.e. if it's
renewed before reaching the maximum permissible level of metals, is spread on
the farm over a large area, in a way to further dilute the presence of these
metals.
To
give you an idea, the substrate of a Phytobac®, studied for about 50 hectares
of orchards, will represent about 3 tons of soil. It is considered that a
maximum of 10 tons of substrate per hectare can be applied. The weight of
agricultural soil (the first 60 centimeters deep) represents about 10,000 tons
per hectare.
The
substrate should not exceed 50 mg of copper per kg of soil. Distributed and
mixed over 1 hectare, the concentration is reduced 1000 times, with negligible
results, since they are below the natural levels of these elements in most
soils.
On
average, the substrate will be renewed every 5 to 10 years, especially
depending on the use of copper and zinc, the most used in agriculture metals,
both conventional and biological, because they are natural elements. Both are
powerful fungicides, bactericides, and important nutritional elements.
However,
their excess is toxic, both for plants, fauna, soil microfauna and microflora.
In order to
promote bacterial activity, care must be taken to aerate the substrate once or
twice a year, by incorporating straw or other lignin-rich organic material,
which will serve as a basic feed for the bacteria.
It is
therefore a biological method of decomposition of chemical materials, which
makes possible, through good agricultural practice, to avoid to the maximum the
collateral effects of phytosanitary sprayings, in both conventional and organic
agriculture.
It is also a
characteristic of soils, to be able to break down chemical molecules. Soils
that are chemically polluted are very rarely agricultural soils. Only DDT and
some other organochlorines or residual herbicides, banned for a long time,
resist degradation. They are still found in many soils, more than 40 years
after they were banned, but in extremely low levels. The degradation takes
place, but it's very slow.
Source: INRA
Cases of
pollution are generally due to accidents, and are therefore very punctual, or
to industrial or mining pollution.
On
agricultural farms, only the proximity of the washing and filling points can
present significant pollution, but on very small surfaces.
However, the
risks of pollution of surface and groundwater remain relatively high due to
rainfall, in particular of effluents accumulated near these critical points.
We now have the opportunity to
avoid unintentional soil and water pollution due to the use of natural or
synthetic pesticides.
This is undoubtedly an important
step forward for the sustainability of agriculture and to avoid as far as
possible the undesirable effects of crop protection.
The concern
of users is growing, but often not yet to the point of measuring the interest
of investment in this kind of equipment.
Yet the
public's concern grows enormously, not always in a justified or even reasonable
way, under the pressure of certain groups of pressure of which I have already
widely spoken.
But
this concern, even if it is largely exaggerated, must represent an engine of
evolution and innovation.
However, we are surprised by the
lack of interest on the part of government departments in this kind of
progress.
Everyone is
scandalized by pollution of all types, or by the risks that may arise from the
use of pesticides, natural or synthetic, but administrations are reluctant to
take drastic decisions on the subject. The treatment of effluents is only
really taken into account in two or three countries, particularly in France.
Yet, even in France, it's not compulsory. This is a strong recommendation
supported by investment aid. Moreover, it takes into account only the risks of
surface and groundwater pollution, not soils.
Some
supermarket groups, or quality protocols, are beginning to worry about them,
but again, there is no obligation on the subject today. Only accidents are
punished.
Would it not be smarter and more
effective to make the control and treatment of plant-protection effluents
mandatory, in order to avoid accidents, the consequences of which are always
serious?
The soil,
through its microbial life, has the capacity to protect itself by decomposing
the molecules likely to be harmful to it. It is this characteristic that the
biobed uses. A careful use of modern pesticides does not pose a risk to soils,
if properly managed. The natural microbial life in all soils is normally sufficient
to degrade all currently available molecules, provided that the agricultural
practices allow a good aeration of the superficial layers.
However,
attention must be paid in at least two particular situations:
-
Very
sandy soils generally have low or no microbial life. The use of pesticides must
be extremely precautionary. It's all the more true that these soils have little
capacity to retain molecules, which are likely to reach quickly the
groundwater, without having had time to be decomposed.
-
Crops
or cultivation methods which use metallic salts in large quantities. This is
the case of certain crops such as vineyards or olive trees. This is also the
case for organic farming, which, because it lacks the diversity of synthetic
fungicides, uses copper and zinc salts repeatedly. Metals that are not
degradable can accumulate to dangerous levels.
Picture: https://www.research.bayer.com/img/27/Phytobac/wasser_grafik_1075px_en.jpg
The use of natural or synthetic
pesticides is a useful, safe, and even ecological practice thanks to the
productivity it allows in food production. But to be sustainable, it's
essential to take a series of precautions such as control of phytosanitary
effluents.
The soil itself provides us with
the solution to meet this need, thanks to the biobed.
Soil is an indispensable, living
and fragile resource.
It's our duty
as users, farmers, gardeners and others to take great care of them. It's also
necessary to understand its functioning in order to make the best use of it
without harming it.
Knowing your soil is essential for
a sustainable agriculture.
Agronomy is
a science that still has great things to discover.
Some even
believe that this is one of the main explorations that humans still have to
realize.
The future of humanity lies beneath
our feet, let's take great care of our soil.
Wow, I want to salute you. Is a very good comment and very informative as well
RépondreSupprimerCall Gurls Gurugram
Busty Call Girls Gurgaon
Call Girls Delhi
Gurugram Call Girls Photos
Call Girls Bhiwadi
Call Girls Rajiv Chowk
Call Girls Gurugarm
Gurugram Call Girls Photos
Gurugram Escorts Service
Call Girls In Noida
Call Girls Dwarka Delhi